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ABSTRACT

As single-thread performance plateaus, modern systems increasingly rely on parallelism
to scale throughput. Yet, efficiently managing concurrency—particularly in transactional
systems—remains a major bottleneck. This thesis explores the feasibility of accelerating
transaction scheduling via hardware, leveraging FPGAs to offload scheduling logic from the
CPU. We revisit Puppetmaster, a hardware transaction scheduler, and present a redesigned
architecture emphasizing deployability, modularity, and evaluation. We implement both
an optimized software baseline and a Bluespec-based hardware design, evaluating their
performance across synthetic YCSB-style workloads with varying contention levels. Our
hardware prototype demonstrates competitive throughput, achieving over 90% of peak
throughput even under high-contention workloads. These results validate the potential of
transaction scheduling as a target for hardware acceleration and highlight promising directions
for future hybrid hardware-software concurrency-control systems.
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Chapter 1

Introduction

As a prelude to any discussions pertaining to parallel processing, it is customary to discuss
Gordon Moore’s prediction that the number of transistors in an integrated circuit would double
about every two years. Many believe that Moore’s Law, first formulated in 1965, no longer
applies in modern times. With improvements in single-core performance becoming increasingly
challenging, efforts have shifted toward leveraging parallel and distributed computations to
enhance performance [14].

Parallel programming is, however, notoriously difficult. Since threads of computation can
interleave unpredictably, assumptions about invariants may break in subtle yet catastrophic
ways. Early primitives such as locks and atomic memory instructions allow threads of
execution to be synchronized. However, the state space is often too large to reason through,
making it challenging to design correct and performant parallel programs. Therefore, there
have been many proposals for new abstractions to ease these pain points.

Transactions are a powerful abstraction in the database-system literature that allows the
programmer to specify a sequence of commands to be executed atomically. The transaction
engine guarantees that each transaction is fully executed or not executed at all. The engine
also ensures other properties collectively called atomicity, consistency, isolation, and durability
(ACID) to protect programmers from observing or having to manage unintuitive behaviors.

The concept of transactions, usually applied to the database setting, is so powerful that
it has also been adapted as a synchronization primitive on a single multicore computer.
This concept is called transactional memory (TM) [9]. Transactional memory allows the
programmer to specify a sequence of instructions, including those that read from or write to
shared memory, and have it be executed as an atomic unit or not executed at all. Unlike
traditional lock-based approaches, TM shifts the burden of managing concurrency from the
programmer to the runtime system, potentially improving both correctness and productivity.

While software implementations of TM offer flexibility, they often suffer from performance
overheads due to instrumentation, bookkeeping, and validation costs. Hardware transactional
memory (HTM) designs reduce these costs by providing direct architectural support for
conflict detection and rollback. However, HTMs are typically constrained by hardware
resources and may not support complex workloads or long transactions. Hybrid designs
that combine both software and hardware techniques strike a balance between flexibility and
performance. The push to use hardware to increase performance has broadened the design
space of high-performance job scheduling and concurrency control in database systems. This
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area of research remains ripe for exploration.
This thesis explores the feasibility of implementing transaction scheduling in hardware,

leveraging FPGAs to accelerate scheduling decisions. We revisit Puppetmaster, a hardware
transaction scheduler originally proposed in [19], and present a significantly redesigned architec-
ture aimed at improving deployability, modularity, and evaluation. To assess its effectiveness,
we implement an optimized software baseline and perform comparative benchmarking across
various workloads. Our results demonstrate that with careful design, a hardware scheduler
can achieve competitive performance, validating the potential of transaction scheduling as a
viable target for hardware acceleration.
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Chapter 2

Background

2.1 Transaction Scheduling
Transaction scheduling is the process of determining which transactions can be executed
concurrently without violating correctness. It lies at the core of concurrency control in
database systems and has also been explored in the context of transactional memory.

2.1.1 Concurrency Control

Concurrency-control mechanisms ensure that multiple transactions executing simultaneously
do not lead to inconsistent states. Broadly, strategies fall into two categories: pessimistic and
optimistic [16]. Pessimistic strategies prevent conflicts through mechanisms such as locking.
Optimistic strategies assume conflicts are rare and detect them at commit time, rolling back
the execution of transactions as needed [12]. Common implementations include timestamp
ordering, deadlock detection, validation schemes, and serialization graphs.

The “Staring into the Abyss” paper [23] examines the scalability challenges of existing
concurrency-control mechanisms as the number of cores increases. It finds that traditional
techniques such as two-phase locking and optimistic concurrency control suffer from significant
contention and overheads in multicore environments. These findings motivate the exploration
of alternative architectures, including hardware-assisted transaction scheduling.

2.1.2 Transactional Memory (TM)

Software Transactional Memory (STM) [20] implements transactional semantics in software.
STM systems track memory accesses in logs—either redo or undo logs—and validate transac-
tions during commit. Systems may use eager or lazy versioning, and conflict detection may
be implemented at various stages of transaction execution. Although STMs offer portability
and ease of development, they introduce nontrivial overheads.

Hardware Transactional Memory (HTM) [10] provides architectural support for trans-
actions, enabling faster conflict detection and rollback through cache-based mechanisms.
However, HTMs are typically constrained by hardware limitations such as cache size and
support for limited instruction types. Notable HTM implementations include Intel TSX [13]
and AMD Advanced Synchronization Facility (ASF) [1].
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Hybrid TM systems combine the strengths of STM and HTM. For example, Hardware-
Assisted Transaction Scheduler (HaTS) [4] introduces software-computed “conflict indicators”
which group potentially conflicting transactions into distinct scheduling queues for execution
on an HTM system. While the grouping may not always be accurate, the underlying HTM
system ensures correctness. By leveraging the HTM effectively, overall performance improves.
HaTS exemplifies hybrid TM systems, in which the design space is not restricted to either
software or hardware but instead requires their collaboration.

2.1.3 OLTP and TM Benchmarks

To evaluate transactional systems, standard benchmarks are used to simulate realistic
workloads.

The TPC-C benchmark [22] models a wholesale supplier with multiple warehouses and
transaction types. TPC-C transactions typically touch multiple objects with varying read and
write patterns. This benchmark is commonly used to evaluate online transaction processing
(OLTP) systems. The DBx1000 system [23] is an in-memory database that provides a reference
implementation for TPC-C and other workloads. Key characteristics of TPC-C include skewed
access patterns, large object spaces, and complex dependencies among transactions. These
traits make it a useful testbed for evaluating the scalability and efficiency of transaction
schedulers.

The STAMP benchmark suite [17] includes a set of applications tailored to evaluate TM
systems. It includes workloads with various contention profiles and access patterns. The
Stampede project [18] extends STAMP with more instrumentation and modifications to
better simulate high-contention environments and hybrid memory models.

The Yahoo! Cloud Serving Benchmark (YCSB) [5] is another widely used benchmark,
particularly for evaluating key-value and NoSQL stores. YCSB models a simple transactional
workload on a single table with millions of rows. Each row contains fixed-size records, and
the benchmark defines a single transaction type parameterized by access count (typically 16
records), the ratio of reads to writes, and the access pattern (e.g., uniform, Zipfian). Due to
its simplicity and tunability, YCSB is well-suited for isolating the effects of scheduling and
contention, and it forms the primary benchmark used in this thesis.

2.2 Field-Programmable Gate Arrays (FPGAs)
FPGAs are programmable logic devices that offer fine-grained control over hardware behavior.
They are commonly used in domains where customized parallelism, deterministic latency,
or offloading computation from CPUs is advantageous. Users write hardware designs in
Hardware Description Languages (HDLs) such as Verilog, VHDL, or Bluespec.

2.2.1 Bluespec Hardware Description Language

Bluespec [2] is a high-level HDL based on guarded atomic actions. It provides a functional
programming style and strong type system, which simplifies reasoning about concurrency in
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hardware. Bluespec designs are compiled into Verilog, making them compatible with standard
FPGA toolchains. Bluespec is our language of choice for implementing Puppetmaster.

2.2.2 Connectal Framework

Connectal is a codesign framework that integrates Bluespec-based hardware with C++ host
software. It allows developers to declare interfaces in a makefile using a domain-specific
syntax. For each declared interface, Connectal generates the necessary glue logic, including
PCIe drivers and host-device bridges.

Connectal expects the project to implement a hardware top-level module that defines
methods and rules corresponding to these interfaces. The framework injects host-facing
interfaces into this module, allowing the host to invoke hardware functions via generated
software bindings. Likewise, the hardware can invoke host functions using reverse interfaces.

Developers typically write host-side C++ code in the same project directory and register
it in the makefile. Connectal then compiles both hardware and software components together.
Running the compiled binary automatically uploads the bitstream to the FPGA and executes
the host code.

While Connectal provides a streamlined development experience for simple projects, it
imposes a rigid project structure. Its tight coupling between host and hardware interfaces
makes it difficult to modularize or experiment with alternative I/O channels. These limitations
are discussed further in later chapters.

2.2.3 Peripheral Component Interconnect Express (PCIe)

PCIe is a high-speed, point-to-point serial communication standard that connects peripheral
devices to a host CPU. It supports multiple lanes for high-throughput data transfer and
uses a layered protocol: the transaction layer (for packet generation), the data-link layer (for
reliability), and the physical layer (for actual transmission).

In FPGA-based systems, communication over PCIe is typically mediated by a kernel
driver or module that maps memory regions or exposes device-specific interfaces to user-space
programs. Connectal provides such a driver, abstracting away low-level protocol details and
exposing function calls for sending and receiving data.

Under the hood, communication often involves DMA (Direct Memory Access) engines,
which allow data to be moved between host and device memory with minimal CPU intervention.
The driver sets up descriptor queues that define memory transactions. These queues are used
by the FPGA logic to initiate or complete transfers, often through memory-mapped I/O
(MMIO) or doorbell registers.

While PCIe provides excellent throughput, its latency can become a bottleneck for fine-
grained operations such as transaction-level scheduling. Understanding the trade-offs of using
PCIe is critical when evaluating hardware accelerators in codesigned systems.

2.2.4 Heterogeneous CPU-FPGA Platforms

Modern platforms integrate CPUs and FPGAs into single packages to allow hardware-
software co-execution. Examples include AMD’s Zynq SoCs, which pair CPU cores with
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programmable logic on a single chip. Cloud offerings such as Amazon EC2 F1 and F2
instances provide machines with high core counts connected to FPGAs via vendor-specific
“shell” environments and high-bandwidth memory. These platforms support a wide range of
deployment models for accelerating compute-intensive tasks, including transaction-scheduling
engines like Puppetmaster.

Such systems enable experiments in offloading compute kernels to hardware while retaining
the flexibility of general-purpose processors for control logic. As these platforms become
increasingly accessible, they provide an ideal setting for exploring the feasibility of hardware-
accelerated scheduling.
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Chapter 3

Software and hardware system design for
Puppetmaster

This chapter describes the full system architecture of Puppetmaster, covering both its software
simulation and hardware implementation. We begin with an overview of Puppetmaster’s role
as a conflict-aware transaction scheduler and its interface with clients and executors.

We then detail the hardware communication pipeline and supporting development tools,
which enable modular builds and benchmarking across different configurations. The software
interface and simulator are introduced next, mirroring the hardware design to provide a fair
and tunable performance baseline.

The latter sections focus on the hardware scheduler’s architecture, including pipelining,
conflict detection using Bloom filters, and techniques for lookahead and rescheduling. We
conclude with an evaluation of Bloom filter design choices, such as chunking and filter
separation, along with synthesis results and trade-offs.

Together, these components form the foundation for the performance evaluation in the
next chapter.

3.1 Puppetmaster’s responsibilities
Puppetmaster is a hardware-based transaction scheduler. Its input is a stream of transaction
descriptors, and its output is a stream of scheduling decisions. Puppetmaster’s role is to
identify sets of transactions that can be executed concurrently without conflicts. It maximizes
the number of concurrently executable transactions, while minimizing scheduling latency and
maximizing throughput.

A transaction descriptor consists of a transaction identifier (transaction ID), a read set
(the set of objects read by the transaction), and a write set (the set of objects read or written
by the transaction). The descriptors are provided by the host, which is typically a software
runtime on the host CPU.

For each transaction it receives, Puppetmaster emits a corresponding start message—
though not necessarily in the order the transactions arrived. It only starts a transaction if
it deems it safe to execute. These decisions are sent to the executor, a collection of worker
cores that have the capacity to perform the actual work. These worker cores are referred
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to as puppets in the original paper. The executor is responsible for notifying Puppetmaster
upon the completion of a transaction. Figure 3.1 summarizes the intended use and high-level
operation of Puppetmaster.

Figure 3.1: Abstract view of Puppetmaster

The notion of an object is opaque to Puppetmaster. Each object is identified by a 64-bit
integer, to which Puppetmaster assigns no internal semantics. One may view Puppetmaster
as a lock manager implemented in hardware. Puppetmaster guarantees only that, at any
given time, all transactions it has started are either conflict-free or have already completed
execution. Therefore, the host is ultimately responsible for partitioning the workload into
transactions and correctly specifying the read and write sets, in order to maintain the desired
application-level consistency guarantees.

3.2 Hardware communication interface
Puppetmaster is designed to be agnostic to both the source of transaction requests and the
location of the execution units that carry them out. This flexibility allows the system to
support a range of deployment configurations, including both software-driven and hardware-
driven modes.

In typical use cases, the host CPU is responsible for issuing transactions to Puppetmaster.
As such, the original implementation tightly integrated a Connectal-based communication
interface between the host CPU and Puppetmaster. The Connectal interface allowed software
running on the CPU to initiate and manage transactions over PCIe. However, due to the
relatively high communication latency inherent to this setup, isolating the impact of the host
interface on microbenchmarking became necessary.

To eliminate the influence of host-CPU communication latency on microbenchmarking,
we introduced a hardware-based transaction generator that allows transaction requests to be
driven directly from within the FPGA. While software is still used to configure the generator
and trigger the start of the benchmark, the transactions themselves are emitted in hardware.
This setup is generalized by abstracting the input driver into a reusable module interface.
Because FPGA synthesis is time-consuming and input drivers generally occupy minimal
area, we synthesize all potential drivers together and use a MUX—controlled by the CPU
testbed—to select the active source. This modular design not only enables benchmarking
under controlled conditions but also allows us to move away from the Connectal framework,
opting for lighter-weight alternatives when needed.
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On the execution side, Puppetmaster supports two modes. In the first mode, execution is
performed on the host CPU, where transactions are routed back via PCIe. In the second
mode, transactions are executed directly in hardware units on the FPGA. For benchmarking,
these hardware units are currently “fake” executors that simply wait for a specified number
of cycles, but the architecture is designed to support realistic hardware accelerators in future
use cases.

Puppetmaster sends a transaction start message, also called a work request, which instructs
the executor to begin processing the transaction. To support both execution modes without
the need for multiple FPGA builds, we abstracted the executor interface in a manner similar to
the input driver. Previously, the original implementation required toggling macro definitions
and generating two separate software interfaces under Connectal to switch between execution
modes—a cumbersome and error-prone process. Our abstraction avoids the need for multiple
synthesis passes and provides a unified interface for transaction completion messages.

All communication channels between Puppetmaster and external components (such as
the host CPU or hardware modules) are represented as external connections in Figure 3.2.

Figure 3.2: Block diagram for Puppetmaster hardware implementation

To understand the data flow within the system, consider the path of a single transaction.
Initially, the host CPU software issues a transaction request. This request includes a transac-
tion ID, a 64-bit user-defined auxiliary field (which may encode flags or parameters), and up
to 16 associated objects. The transaction is then passed to Puppetmaster. Puppetmaster
eventually decides to schedule the transaction. A work request containing the transaction
ID and auxiliary data is forwarded to the executor. For CPU-based execution, this work
request prompts the host runtime to carry out the transaction. Since Puppetmaster provides
all necessary metadata, the runtime can perform the work independently. Once execution is
complete, the CPU sends a work-done message, again identified by transaction ID.

In benchmarking scenarios, the sequence is slightly different. The host software first
configures the input and execution MUXes and sets the parameters for the input generator.
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After issuing a start command, the input generator begins streaming transactions into
Puppetmaster. These transactions follow the same internal processing flow, except the
executor in this case is a hardware unit, not the CPU. No additional communication with the
CPU occurs during execution. The auxiliary field of the transaction is used to specify the
duration (in cycles) for which the fake executor should simulate activity. For performance
measurement, we capture timestamps from the debug output channel to compute latency
and throughput metrics.

3.3 Development tools
As discussed in subsection 2.2.2, Connectal provides a set of interfaces that enable communi-
cation between host software and hardware accelerators. However, this framework imposes a
strict project structure in which it must serve as the top-level build system. It orchestrates
the compilation and execution of both hardware and software, aligning with its marketed
goal of enabling “software-driven hardware development.” Despite this premise, the practical
use of Connectal reveals that much of the software and interface code is still generated based
on the hardware source code, making the relationship between components tightly coupled
and inflexible.

Tight coupling between Connectal’s host interface and the rest of the system introduces
several workflow challenges. First, any change to the hardware or software side often requires
re-running the entire Connectal build flow, due to interdependencies among Connectal’s
internal logic, its generated files, and our own project-specific code. While selective rebuilding
is technically possible, it demands detailed knowledge of Connectal’s undocumented internals.
As a result, even small changes can incur significant time costs.

Furthermore, Connectal’s generated interfaces are not modular. If, for example, we
wish to switch away from Connectal’s PCIe-based communication to a different transport
mechanism, every dependent software component must be restructured accordingly. This
lack of abstraction creates a high barrier to experimentation and modular development.

To overcome these limitations, we developed an internal tool that extracts only the
user-relevant components from a Connectal build. Specifically, it generates a clean header file
and object file containing the necessary interfaces, which can then be compiled into larger
software systems independently. The generated files allow software developers to treat the
Connectal-generated code as a standalone library, calling into it only when needed and freeing
them from having to engage with the full Connectal build environment.

Another significant limitation of Connectal is its poor support for configuration man-
agement. Modifying hardware parameters usually requires a full rebuild, with no built-in
system to track or reuse previously synthesized configurations. Therefore, we created a build
system that treats the project directory as the ground truth and maintains a set of versioned
copies, each corresponding to a specific configuration. Users can request builds for any known
configuration, and the script will verify whether the corresponding bitstream is up-to-date
with the latest source changes. If not, it provides the option to trigger a rebuild. The tool also
supports uploading bitstreams directly to the FPGA, streamlining the deployment process.

The combination of these tools enables clean separation of hardware and software devel-
opment. As long as the hardware-software interface remains consistent, developers on both
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sides can work independently. Hardware teams can experiment with architectural parameters
without breaking software compatibility, while software developers can iterate on their logic
without inadvertently triggering time-consuming hardware-recompilation steps.

3.4 Software interface
The software interface to Puppetmaster provides a simple API for initializing the system,
submitting transactions, polling for scheduling decisions, and reporting transaction completion.

To begin, the user must call pmhw_init with the number of clients (transaction sources)
and puppets (executors). While these numbers could be inferred dynamically, providing the
counts upfront simplifies the software simulation backend.

The execution model is configurable via pmhw_set_config and pmhw_get_config, which
allow toggling between real and simulated executors and adjusting how long fake executors
simulate work.

Once initialized, clients submit transactions via pmhw_schedule. This function is blocking
and may stall if the internal communication channel is full. Internally, it delegates to
Connectal’s driver interface, which handles PCIe buffering and protocol logic.

Puppets poll for available work using pmhw_poll_scheduled. When a transaction becomes
ready, the function returns the associated transaction ID. After completing execution, the
puppet must notify Puppetmaster via pmhw_report_done.

All API functions are designed to be efficient and easily integrable. Requiring explicit
client and puppet IDs avoids implicit state tracking and enables high-performance SPSC
queue-based simulation, as discussed in Section 3.5.

A summary of the software interface is shown in Table 3.1.

Function Description

pmhw_init Initializes the Puppetmaster runtime. Takes the number of
clients and puppets. Must be called first.

pmhw_set_config Sets runtime configuration (e.g., fake-executor mode, work
duration). Takes a pm_config_t pointer.

pmhw_get_config Reads the current configuration into a pm_config_t struct.
pmhw_schedule Submits a transaction for scheduling. Blocks if the internal

queue is full. Requires client ID and a pointer to a txn_t.
pmhw_trigger_input_driver Manually triggers the input driver. Used in benchmarking

setups only.
pmhw_poll_scheduled Blocking call for puppets to retrieve scheduled transactions.

Takes puppet ID. Returns transaction ID when ready.
pmhw_report_done Notifies the system that a transaction has completed. Takes

puppet ID and transaction ID.
pmhw_shutdown Cleans up internal state and terminates the runtime.

Table 3.1: Software interface for interacting with Puppetmaster
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3.5 Software scheduling model
To model Puppetmaster’s behavior at a high level, we implemented a software simulator
that captures its core design principles. It adopts the same greedy scheduling algorithm we
will later implement in hardware (section 3.6), selecting the earliest conflict-free transactions
for execution. While not cycle-accurate, the simulator reflects the same queuing structure
and execution model as the hardware design, allowing us to establish a meaningful and fair
performance baseline.

3.5.1 Thread architecture

Although the simulator supports multiple transaction sources, for evaluation purposes in
chapter 4, we restrict the system to a single source of transactions. This source, referred to
here as the client thread, plays the role of the transaction driver described in earlier sections: it
is responsible for streaming transactions into the system using the software interface described
in Table 3.1. The simulator also spawns one thread per executor, each corresponding to a
puppet, and a single scheduler thread that simulates the logic of Puppetmaster itself.

Each of these threads is statically pinned to a dedicated CPU core to avoid scheduling
interference and context-switching overheads. The scheduler thread is assigned to core 0, the
main testbench thread occupies core 1, the client thread is pinned to core 2, and the puppet
threads are assigned starting from core 3 onward. This setup ensures stable and reproducible
timing results across runs. A summary of this core allocation is provided in Table 3.2.

Core ID Purpose

0 Scheduler thread
1 Main thread
2 Client thread
3 Puppet #0
4 Puppet #1
...

Table 3.2: Core assignments used in the software simulation

3.5.2 Scheduling loop

The software scheduling model mirrors the structure of a streaming hardware pipeline. Each
client thread communicates with the scheduler via a single-producer single-consumer (SPSC)
queue. Similarly, each puppet has two SPSC queues: one used by the scheduler to deliver
scheduled transactions and another for reporting completions. These queues are implemented
using lock-free ring buffers and are sized to ensure they never become the bottleneck under
load. (See Appendix B.)

To keep track of which transactions are currently executing, the scheduler maintains a
per-puppet active queue. This queue, implemented as a circular FIFO buffer, stores the full
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transaction descriptors and is used for two purposes: to check for conflicts during scheduling
and to verify transaction completions. FIFO ordering is critical for simplifying cleanup. When
a puppet reports that a transaction has finished executing, the scheduler assumes that this
transaction corresponds to the head of the active queue and dequeues it accordingly. This
assumption is enforced by the puppet runtime, which processes transactions strictly in arrival
order.

The core of the scheduler loop is a greedy algorithm. At each iteration, the scheduler
inspects each client’s input queue and performs a bounded lookahead to fetch a small number
of transactions into a local buffer. For each transaction in the buffer, the scheduler checks
whether it conflicts with any live transaction currently executing on any puppet. If no
conflict is detected and at least one puppet has capacity to accept more work, the transaction
is assigned to an available puppet, added to that puppet’s active set, and enqueued into
the corresponding schedule queue. Puppet selection is performed arbitrarily via a free-list
mechanism. Fairness is not prioritized in this model; instead, the goal is to keep the puppets
saturated with conflict-free work while minimizing scheduling latency.

Each puppet thread continuously polls for scheduled transactions. Upon receiving a
transaction ID, it simulates execution by busy-waiting for a fixed number of CPU cycles.
This duration is specified at runtime and can be configured to simulate realistic workloads
with nonzero execution time, or set to zero to study the limits of scheduler throughput. After
completing its simulated work, the puppet enqueues a completion message to the scheduler
and waits for its next assignment.

3.5.3 Logging and analyzing

To capture system behavior in fine detail, the simulator includes a binary logging facility that
records key lifecycle events for each transaction. These events include when a transaction is
submitted, when it is scheduled, when a puppet begins and ends execution, and when the
scheduler performs cleanup. To reduce measurement overhead, logging is performed with
configurable sampling. Typically, only one out of every 2k transactions is logged, where k is
chosen at runtime. We have confirmed empirically that sampling does not affect throughput
or latency at the rates we use for evaluation.

After a benchmark run, we use an external analyzer to validate correctness and extract
performance metrics. This analyzer ensures that no two conflicting transactions were ever
live at the same time, that each puppet executed transactions in FIFO order, and that all
transactions submitted were eventually scheduled and completed. These guarantees allow us
to use this simulator as a faithful model of the intended hardware behavior.

Ultimately, the goal of this software implementation is to serve as a fair baseline that is
demonstrably free of major bottlenecks. By ensuring that the scheduler is able to sustain
high throughput and low latency even under artificial zero-contention conditions, we establish
that any performance advantage shown by the hardware implementation arises from its
architectural strengths, not from avoidable software inefficiencies.
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3.6 Hardware architecture
This section describes the hardware implementation of Puppetmaster and the scheduling
algorithm it employs. While the high-level behavior mirrors the greedy approach used
in our software simulator, the hardware design introduces additional pipeline staging and
concurrency to minimize latency and maximize throughput. At its core, the architecture
conservatively tracks active transactions using Bloom filters and leverages efficient buffering
to implement lookahead and rescheduling. The architecture is illustrated in Figure 3.3.

Figure 3.3: Puppetmaster’s internal architecture

3.6.1 Input pipeline and lookahead logic

Transactions arrive into Puppetmaster through an input queue, which may be populated by
either the software interface or an internal hardware transaction generator. To implement
a bounded lookahead mechanism—similar to the one used in software—we stage incoming
transactions through two additional buffers: a small lookahead queue, and a retry queue used
for rejected transactions.

An arbiter selects between the main input queue and the retry queue when feeding
the lookahead queue. Prioritizing the retry queue ensures that transactions that were
previously rejected due to conflicts or lack of scheduling capacity are reconsidered promptly.
Transactions in the lookahead queue are examined one-at-a-time. This architecture ensures
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that the scheduler has a short but flexible window of pending transactions to consider without
stalling on every rejection.

3.6.2 Conflict detection and eventual removal

Each transaction in the lookahead queue is checked for conflicts against the currently active
transactions, conservatively tracked using Bloom filters. We refer to this data structure for
conflict detection as a summary. Designing the Bloom filter involves various parameters, such
as whether to use combined or separate filters for read and write sets, as well as decisions about
sizing—balancing false positives against the FPGA logic resource constraints. Abstracting
these implementation choices behind the summary interface allows more effective exploration
of the design space. Specific details of our Bloom-filter implementation are provided in
section 3.7.

Because Bloom filters do not support deletions, Puppetmaster cannot individually remove
transaction entries. Instead, it maintains a pair of Bloom filters: a current filter, tracking
active transactions; and a shadow filter, accumulating all scheduled transactions since the last
refresh. Transactions are inserted into both filters simultaneously. Periodically, the current
filter is replaced by the shadow filter, and the shadow filter is cleared. After a refresh cycle,
the shadow filter is rebuilt in the background by traversing the list of active transactions.

While this approach conservatively tracks transactions—potentially including completed
ones—it guarantees conflict-safety and effectively exploits hardware parallelism. By amortizing
the refresh operation over multiple transactions, Puppetmaster avoids complex per-transaction
cleanup logic. Crucially, all transactions are eventually removed, preventing long-term
accumulation of stale state.

3.6.3 Adaptive refresh strategies

In the current implementation, the shadow filter is copied to the main filter after a fixed
number of conflict-check failures. While simple, this strategy can waste cycles: during a copy,
all conflict checks must pause. If no transactions were actually removed from the active list,
the copy is unnecessary and prevents conflict checks from running in a tight loop. In dense
or high-conflict workloads, stale entries may linger too long, increasing the false-positive rate;
refreshing earlier could improve throughput.

A more adaptive approach would monitor the difference between the number of currently
active transactions (i.e., those not yet reported as complete) and the number of transactions
represented in the Bloom filter. The latter can be approximated using a counter that tracks
how many transactions have been inserted into the filters since the last refresh. When the
gap between these two counts grows large, it suggests that many completed transactions
are still inflating the filter’s state and contributing to false positives. Conversely, when the
gap is small, the filter is still fresh, and refreshes can be deferred. This heuristic provides a
lightweight and general-purpose mechanism to improve scheduling efficiency without needing
deep inspection of the filter state.

22



3.7 Bloom filter sizing and synthesis results
Earlier, we introduced the summary abstraction for conservative conflict detection. In
this section, we detail our implementation using Bloom filters, focusing on the critical
design considerations and trade-offs. Specifically, we selected filter parameters that balance
false-positive rates, FPGA resource usage, and scheduling latency.

3.7.1 Chunked Bloom-filter architecture

The primary design goal of our Bloom filter is to minimize false-positive conflict detections.
To this end, we adopt a parallel Bloom filter architecture with k partitions, each corresponding
to a different hash function. This approach reduces false positives compared to single-hash
filters by independently checking object membership across multiple hash spaces. A detailed
probabilistic analysis is provided in Appendix D.

However, directly checking all bits for every object in a large transaction is impractical.
A single transaction may contain up to 16 objects (8 reads and 8 writes), requiring 64 bit
probes when using 4 hash functions. Probing all of these in parallel would require excessive
combinational logic and consume an impractical amount of LUTs.

We consider two main strategies to reduce resource usage.
The first strategy is to process one object at a time. For each object, we fetch one

chunk from each partition and check the corresponding bits. This strategy reduces logic
requirements but introduces latency proportional to the number of objects per transaction.

The second strategy is to use a chunked Bloom filter architecture. Here, we subdivide
each partition into c smaller chunks. We compare all objects in parallel against one chunk at
a time. Each object maintains state indicating whether its corresponding bit is found in each
partition. After scanning all chunks, we determine if any object matches all k bits—signaling
a conflict.

These approaches can be combined. For example, we may check a small group of objects
at a time against either full partitions or small chunks to balance throughput and resource
usage.

Our prototype implements the chunked Bloom-filter design with the following parameters:
• k = 4 hash functions (partitions)
• c = 8 chunks per partition
• 256 bits per chunk

This set of parameters results in a filter of m = 4× 8× 256 = 8192 bits. The design enables
narrow per-cycle logic, efficient BRAM utilization, and manageable LUT usage.

A partitioned Bloom filter of this size can store 778 objects or 48 transactions (assuming
16 objects per transaction) and have a false positive rate of 1%.

3.7.2 Area consumption by Bloom filters

To examine trade-offs between filter size, accuracy, and resource utilization, we evaluated
several Bloom-filter configurations. Table 3.3 presents the total filter size, number of objects
where false positive rate (FPR) is 0.1% and 1%, and FPGA-synthesis results for each
configuration. The Bloom filters can insert or check for conflicts one transaction (8 reads and
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8 writes) at a time. We synthesized the design, targeting AMD Virtex Ultrascale XCVU095
FPGA on the VCU108 development board, at the clock frequency of 125 MHz. The FPGA
has 1,176,000 system logic cells, which translate to 537,000 LUTs and 1,075,200 flip-flops.

Configuration m FPR=0.1% FPR=1% LUTs FFs WNS (ns)

4 × 4 × 256 4096 200 389 77,620 4,285 0.068
4 × 4 × 512 8192 400 778 141,589 6,684 Failed
4 × 8 × 256 8192 400 778 75,081 4,343 0.068

Table 3.3: Estimated false positive rates and synthesis results for various Bloom filter
configurations (partitions × chunks × bits per chunk)
LUTs stand for lookup tables. FFs stand for flip-flops. WNS stands for worst negative slack. Failed means
synthesis tool cannot close timing.

Somewhat unintuitively, the 4 × 8 × 256 configuration in the first row consumed more
LUTs and flip-flops than the 4 × 4 × 256 variant in the third row, despite having twice the
bit count. We attribute this discrepancy to synthesis heuristics and backend nondeterminism.
Notably, the 4 × 4 × 256 design achieved better timing slack, suggesting that the synthesis
tool had to exert less effort optimizing its logic overall. Additionally, the overall LUT and
FF usage is higher than expected across all configurations. We suspect this may be due
to suboptimal static elaboration during Bluespec-to-Verilog translation, which we aim to
address in future revisions.

3.7.3 Separating read sets and write sets

Currently, a single shared Bloom filter tracks both reads and writes, simplifying the hardware
design but potentially causing higher false positives in read-intensive scenarios. Supporting
distinct Bloom filters for read and write sets would significantly enhance scheduling precision
at the cost of double the memory size. Our summary abstraction easily accommodates such
optimizations, enabling straightforward exploration of future architectural improvements.
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Chapter 4

Evaluating Puppetmaster

Is it worth accelerating transaction scheduling in hardware, given the overheads of software-
hardware communication?

This chapter aims to answer that question through a sequence of focused experiments. We
begin by establishing a software baseline. Using a fully software greedy scheduling pipeline
discussed in section 3.5, we analyze both peak throughput and minimum achievable latency.

Then, we shift our attention to the hardware implementation of Puppetmaster. By
benchmarking with the in-hardware transaction generator and executor, we assess the
scheduler’s throughput and latency in isolation. These results demonstrate that Puppetmaster
performs well as a drop-in IP core for hardware-only scenarios and does not become a
bottleneck in hybrid software-hardware systems.

Throughout this chapter, we test our hypothesis: that transaction scheduling is a suit-
able candidate for hardware acceleration, even in the presence of moderate communication
overheads.

4.1 YCSB Workload
To evaluate Puppetmaster’s scheduling performance across varying contention levels, we use
the Yahoo! Cloud Serving Benchmark (YCSB) [5]. YCSB is widely used to model key-value
store workloads and offers tunable parameters that allow us to control access skew and write
intensity.

Each benchmark run uses a single transaction type that accesses a fixed number of records
(typically 16), randomly drawn from a database of size N = 20, 000, 000. Record access
follows a Zipfian distribution with skew parameter θ. Each access has a write probability ω.

We adopt θ = 0, 0.6, and 0.8 to model low, medium, and high contention, consistent
with [23]. We focus on two YCSB workload classes: read-heavy (ω = 0.05) and write-heavy
(ω = 0.5).

Figure 4.1 shows the fraction of accesses targeting the top 10% of records for different θ
values. As θ increases, contention increases significantly: at θ = 0.8, 60% of accesses go to
just 10% of the records.

We assume a fixed execution time per scheduled transaction, ignoring caching or locality
effects. Since our focus is on scheduling, not data layout, we treat the record structure as
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Figure 4.1: Fraction of accesses targeting top 10% of the records with Zipfian distribution

opaque. All transactions are independent and uniform in type, simplifying the analysis of
scheduler throughput and latency.

4.2 Software Evaluation
We begin by characterizing the performance of Puppetmaster’s software-only implementation.
All experiments in this section use 8 puppets and synthetic workloads generated offline.
Transactions vary in object count, access pattern skew (Zipf θ), and read/write ratio.

Experiments are conducted on a consumer laptop with a 6-core (12-thread) AMD Ryzen
5 7640U processor. To reduce measurement noise, we prioritize the testbench process using
chrt and report only the best-performing run (i.e., least affected by interference).

Other relevant configuration parameters are as follows:
• The system supports up to 16 puppets (as defined at compile time).
• Each transaction may access up to 16 objects.
• Each puppet can have up to 8 concurrently scheduled transactions, limiting both its

output queue and work-completion queue sizes.
• The client maintains a queue of up to 64 pending transactions.
To reduce logging overhead, only one out of every 214 transactions is recorded.

4.2.1 Best-Case Throughput and latency

To establish a baseline for comparison, we evaluate Puppetmaster under idealized conditions.
We use a workload where each transaction accesses zero objects—resulting in no conflicts—and
performs no actual work (0 µs duration). The workload contains 100 million transactions.

To improve histogram visibility, we exclude the top 2% of latency values, which are more
likely attributed to noise (e.g., logging or progress checks).

The system achieves a steady-state throughput of over 11 million transactions per second.
The corresponding end-to-end latency (from submission to work done) distribution is presented
in Figure 4.2, showing a mean latency of roughly 6 µs.
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We note that varying the number of puppets should not, and indeed does not, affect the
result in this best-case simulation.

Figure 4.2: End-to-end latency for zero-object workload (unthrottled)

However, this latency is not representative of intrinsic scheduling cost. Because the client
submits transactions faster than the scheduler can process them, most transactions queue up
and incur queuing delay. To obtain a more meaningful latency measurement, we throttle the
client to submit at no more than half the maximum throughput.

The throttled run yields a much lower mean latency—around 330 ns—shown in Figure 4.3.
Minor histogram gaps and bimodal artifacts are due to timing granularity and logging effects.

4.2.2 Throughput and latency under load

We evaluate the system under various YCSB workloads introduced in section 4.1. Summary
results are presented in Table 4.1, and we make several key observations:

• Transaction throughput is most sensitive to the number of objects per transaction. In
contrast, access type (read vs. write) and skew level have comparatively minor effects
on overall throughput and latency.

• Somewhat counterintuitively, higher contention (i.e., skewed access patterns) often
results in lower latency. A plausible explanation is improved branch-prediction behavior
in the scheduler under more predictable access patterns.

• Thread communication and queue multiplexing introduce approximately 150–200 ns
of latency. This latency is most pronounced in the zero-object (throttled) workload,
where submission-to-receipt and cleanup stages dominate the timing.

• The scheduling logic itself—responsible for conflict detection and puppet assignment—
contributes roughly 100–200 ns of latency, depending on the transaction size.
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Run Workload Throughput E2E Latency Stage Latency (mean, µs)
(txn/s) (mean, µs) Sched. Recv. Done Cleanup

1 Zero-object 11,186,520.38 5.84 5.58 0.148 0.825 2.67
2 Zero-object (throttled) – 0.332 0.146 0.134 0.049 0.174
3 8 objs, read, low, 5 µs 1,569,509.55 59.87 40.45 14.15 5.11 1.13
4 8 objs, read, medium, 5 µs 1,570,282.01 68.73 40.30 23.11 5.11 1.35
5 8 objs, read, high, 5 µs 1,552,408.34 63.61 39.82 18.07 5.12 2.46
6 8 objs, write, low, 5 µs 1,112,837.28 62.92 56.81 0.80 5.12 26.16
7 8 objs, write, medium, 5 µs 1,088,430.28 64.23 58.32 0.67 5.12 27.20
8 8 objs, write, high, 5 µs 1,328,538.51 54.10 47.63 1.19 5.12 6.28
9 8 objs, read, low, 5 µs (throttled) – 5.53 0.255 0.196 5.07 0.177
10 8 objs, read, medium, 5 µs (throttled) – 5.54 0.238 0.221 5.07 0.174
11 8 objs, read, high, 5 µs (throttled) – 5.51 0.213 0.216 5.07 0.180
12 8 objs, write, low, 5 µs (throttled) – 5.62 0.258 0.253 5.06 0.192
13 8 objs, write, medium, 5 µs (throttled) – 5.84 0.231 0.208 5.06 0.181
14 8 objs, write, high, 5 µs (throttled) – 5.54 0.258 0.213 5.06 0.181
15 16 objs, read, low, 20 µs 385,716.15 283.65 160.51 102.87 20.13 0.203
16 16 objs, read, medium, 20 µs 385,237.84 293.37 150.90 112.99 20.12 0.620
17 16 objs, read, high, 20 µs 371,471.31 248.22 166.91 58.11 20.12 1.03
18 16 objs, write, low, 20 µs 383,439.85 248.02 159.45 68.13 20.12 21.93
19 16 objs, write, medium, 20 µs 368,277.32 202.73 169.42 12.43 20.12 54.55
20 16 objs, write, high, 20 µs 289,154.28 228.52 203.20 4.80 20.12 1.94
21 16 objs, read, low, 20 µs (throttled) – 20.65 0.401 0.180 20.06 0.175
22 16 objs, read, medium, 20 µs (throttled) – 20.69 0.446 0.170 20.07 0.175
23 16 objs, read, high, 20 µs (throttled) – 20.72 0.321 0.316 20.07 0.200
24 16 objs, write, low, 20 µs (throttled) – 20.62 0.381 0.185 20.06 0.171
25 16 objs, write, medium, 20 µs (throttled) – 20.60 0.321 0.205 20.07 0.185
26 16 objs, write, high, 20 µs (throttled) – 20.65 0.346 0.170 20.06 0.175

Table 4.1: Performance metrics across software test runs with varying configurations.
Workload names follow the pattern: number of objects per transaction, YCSB workload type (read-heavy or
write-heavy), access skew (low, medium, high), and target execution time per transaction (e.g., 5 µs).
Sched. is the time from transaction submission to when it is scheduled by Puppetmaster.
Recv. is the time from scheduling to when the responsible puppet receives the transaction.
Done is the time from receipt to execution completion.
Cleanup is the time from completion to removal from Puppetmaster’s active set.
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Figure 4.3: End-to-end latency for zero-object workload (throttled)

We note that our software implementation is not optimized for maximum absolute
throughput. However, we believe the performance is representative. Informal testing using
the DBx1000 system from [23] on the same machine indicates that roughly half of the
additional latency and throughput loss stems from concurrency-control logic alone (verified
by substituting in a dummy concurrency-control mechanism).

Overall, our system introduces approximately 0.5–0.7 µs of latency overhead per trans-
action, excluding the user-specified execution time. We achieve 80–90% of the theoretical
maximum throughput under low-to-moderate contention levels.

Crucially, if communication overheads are minimized—e.g., using PCIe with DMA rings—
the scheduler has roughly 100–200 ns per transaction to make a scheduling decision. On an
FPGA, this translates to tens of clock cycles, reinforcing the feasibility of implementing this
logic in hardware without becoming the bottleneck.

4.3 Hardware Evaluation
We now evaluate Puppetmaster’s hardware implementation, targeting the architecture de-
scribed in section 3.6. The design was successfully synthesized on a Xilinx VCU108 devel-
opment board, targeting a 125 MHz clock with positive timing slack. The scheduler was
implemented in Bluespec and integrated with our testbench using Connectal.

4.3.1 Synthesis Results

Table 4.2 summarizes synthesis results for our default Bloom-filter configuration. The system
supports up to 8 reads and 8 writes per transaction, and tracks a bounded list of up to 64
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active transactions at a time. The design fits comfortably within FPGA resource budgets
and is timing-clean at the target frequency.

Configuration Max Objs LUTs FFs Freq

4 × 4 × 256 (combined RW) 8R+8W 173,836 37,278 125 MHz

Table 4.2: Synthesis results for the default hardware-scheduler configuration.

4.3.2 Performance results

The hardware design is synthesized for exactly 8 read and 8 write objects per transaction,
with the Bloom filter tracking the combined set. As a result, we use only a subset of the
workloads from the software evaluation. To accommodate the slower runtime of Verilog
simulation, each run contains just 1,000 transactions. However, the use of simulation enables
precise, cycle-accurate timing measurements without sampling noise. All transactions are
logged, and no outliers are removed.

Results are summarized in Table 4.3.

Run Workload Throughput E2E Latency Stage Latency (mean, µs)
(txn/s) (mean, µs) Sched. Recv. Done Cleanup

1 Zero-object 3,906,860.45 16.20 16.18 0.008 0.008 0.008
2 8R+8W, low contention, 5 µs 1,521,829.12 27.42 13.98 8.45 5.01 0.008
3 8R+8W, medium contention, 5 µs 1,544,888.27 27.37 13.74 8.62 5.01 0.008
4 8R+8W, high contention, 5 µs 1,507,022.73 27.29 14.11 8.18 5.01 0.008
5 8R+8W, low contention, 10 µs 792,342.80 56.33 26.58 19.47 10.01 0.008
6 8R+8W, medium contention, 10 µs 792,212.80 56.31 26.82 19.42 10.01 0.008
7 8R+8W, high contention, 10 µs 791,464.84 56.34 26.83 19.46 10.01 0.008

Table 4.3: Performance metrics across hardware test runs with varying configurations
Workload names follow the pattern: number of read and write objects per transaction, access skew (low,
medium, high), and target execution time per transaction (e.g., 5 µs or 625 cycles).
Sched. is the time from transaction submission to when it is scheduled by Puppetmaster.
Recv. is the time from scheduling to when the responsible puppet receives the transaction.
Done is the time from receipt to execution completion.
Cleanup is the time from completion to removal from Puppetmaster’s active set.

Across all workloads, the scheduler achieves over 90% of the theoretical maximum through-
put, even at the maximum transaction size (16 objects). This level of performance is a strong
result, as software schedulers typically degrade significantly at this scale. Synthesizing for
specific workloads—e.g., with fewer objects or finer-grained conflict tracking—could yield
even better performance.

The scheduler’s critical path is approximately 17–19 cycles (144 ns). This number includes
8 cycles for conflict checking and 8 for insertion into the shadow summary. Although insertion
can overlap with dispatch, it stalls subsequent checks. This latency can be reduced by
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enabling concurrent check-insert operations, e.g., via atomic pointer swaps instead of copying
during refresh.

We also modeled a constant communication latency and confirmed that latency-hiding
techniques (e.g., queueing) were effective—throughput remained stable.

Overall, these results show that Puppetmaster’s hardware scheduler provides low-latency,
high-throughput scheduling. With an ASIC implementation at higher clock speeds, we expect
performance improvements of 5×–10×, making Puppetmaster a compelling drop-in IP core
for transaction-heavy systems.

4.3.3 Summary

Despite the added complexity of hardware design and synthesis, Puppetmaster achieves strong
performance metrics across a range of workloads. The scheduler’s latency and throughput are
competitive with a highly optimized software baseline, even before considering the benefits
of hardware parallelism or faster fabrication technologies. These results support our central
hypothesis and motivate the discussion of broader implications in the next chapter.
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Chapter 5

Discussion and future work

5.1 Discussion
Our evaluation demonstrates that the hardware scheduler presented in this thesis can reliably
handle transaction scheduling at a high throughput, even under highly contended workloads.
This performance result strongly supports the viability of hardware acceleration for transaction
scheduling, especially considering the significant overhead incurred by concurrency-control
mechanisms in current database systems. Given modern databases allocate roughly half of
their CPU cycles to concurrency control, offloading scheduling tasks onto dedicated hardware
holds substantial promise for enhancing overall system performance.

A key advantage of our FPGA-based approach lies in the inherent customization and
parallelism that it provides. Unlike software solutions, where minor concurrency improve-
ments often do not justify dedicating CPU cores, FPGAs enable the exploitation of small
concurrency opportunities at negligible additional cost. This characteristic makes hardware
acceleration particularly attractive for concurrency control, potentially unlocking performance
improvements that are impractical to achieve in software-only implementations.

Additionally, in purely hardware-centric workloads, Puppetmaster’s drop-in IP core
simplifies and accelerates system prototyping and development. Although our current imple-
mentation provides robust performance, there is significant scope for further optimization
tailored to specific FPGA platforms, such as those provided by Xilinx. These targeted improve-
ments could yield additional performance benefits, enhancing Puppetmaster’s attractiveness
for specialized hardware applications.

5.2 Future work

5.2.1 Improved hashing scheme

Our current implementation employs a relatively simple FNV-1-style hash function due to our
benchmark’s randomized workloads lacking locality. While adequate for our initial testing
scenarios, this hash function’s simplicity may limit effectiveness in workloads exhibiting
greater locality or more complex access patterns. Incorporating advanced hash functions,
such as multiply-shift schemes [6], could reduce conflict-detection inaccuracies. However, these
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advanced hashing methods would require careful pipelining of the preprocessing stages on
the input queues to maintain throughput efficiency. Nonetheless, since our conflict-checking
pipeline already introduces some inherent latency, preprocessing can be integrated without
affecting overall throughput, effectively masking additional processing overhead.

5.2.2 Improved communication drivers

Currently, our software-hardware interface relies on Connectal’s portal-based communica-
tion, incurring substantial latency and limiting throughput due to kernel involvement per
transaction. A potential future improvement involves adopting a custom driver utilizing
lock-free DMA ring buffers that allow kernel-free communication. The lock-free DMA-based
communication approach, inspired by FaRM (Fast Remote Memory) [7], could significantly
reduce communication latency and overhead, further enhancing the benefits of hardware
acceleration.

5.2.3 Alternative deployment platforms

Exploring other FPGA deployment platforms could enhance Puppetmaster’s practical adop-
tion. Specifically, system-on-chip (SoC) platforms such as AMD Zynq offer lower latency
interactions between CPUs and FPGAs, beneficial for applications compatible with embedded-
scale computing. Additionally, broader testing on widely accessible FPGA platforms, including
educational development boards and cloud-based offerings such as Amazon EC2 F1 and F2
instances, could increase accessibility and facilitate broader experimentation and adoption.

5.2.4 Revisiting original Puppetmaster architecture

While we have set aside the initial Puppetmaster architecture discussed in Appendix C due
to FPGA area constraints, we believe the original approach still holds potential. Identifying
compelling use cases and demonstrating an efficient end-to-end system using the original
design remains a significant objective. The modular nature of Puppetmaster’s design, with
well-defined interfaces, will facilitate future experimentation in this area.

5.2.5 Support for dependent transactions

Our current implementation supports only static transactions (i.e., transactions with prede-
fined read and write sets). Extending Puppetmaster to handle dependent transactions—where
read/write sets are not predetermined—can be achieved using optimistic lock location predic-
tion (OLLP), a technique introduced in [21]. Supporting dependent transactions would enable
evaluations using more sophisticated benchmarks, such as TPC-C and STAMP, representing
a valuable advancement in our research.

5.2.6 Comparative evaluations with related work

Comparing Puppetmaster more rigorously with related systems like ROCoCoTM [15] would
further highlight our system’s unique strengths and limitations. Unlike ROCoCoTM, which im-
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plements optimistic concurrency control and explicitly targets CPU execution, Puppetmaster
employs pessimistic concurrency control and remains execution-platform agnostic.

In contrast to traditional software-based concurrency-control methods such as two-phase
locking, timestamp ordering, and multi-version concurrency control, which typically manage
conflicts by stalling or aborting transactions reactively, Puppetmaster employs proactive
job scheduling. By dynamically selecting and reordering independent transactions to avoid
conflicts upfront, Puppetmaster can achieve greater parallelism and reduce runtime overhead
from contention, especially under moderate-to-high conflict scenarios.

Future work should include direct performance comparisons against both hardware-
accelerated methods like ROCoCoTM and conventional concurrency control-schemes. Such
comparative evaluations will clarify the performance benefits of Puppetmaster’s proactive
scheduling approach and further demonstrate its suitability for diverse workloads and hardware
configurations.

5.2.7 Cache-awareness and core-assignment optimization

Incorporating cache-awareness into transaction-assignment decisions presents another promis-
ing optimization. Rather than assigning transactions arbitrarily, Puppetmaster could maintain
information regarding core data locality, assigning transactions to cores that minimize data
movement and enhance cache performance. Because the core-assignment problem is largely
orthogonal to conflict detection, this improvement could be developed independently.
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Appendix A

Source code and documentation

All artifacts produced during the development of this thesis are available at:
https://tcpc.me/meng-thesis

Specifically, the repository includes source code for all software and hardware implementations,
as well as all data analysis and plotting scripts. For educational purposes, I have also included
a collection of notes on various topics related to the project, which may be useful for students
interested in continuing this line of research. These notes are included in the same repository.
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Appendix B

Review of single-producer
single-consumer (SPSC) queues

Traditional queue implementations often rely on locking mechanisms (e.g., mutexes) to prevent
concurrent modifications. However, locking introduces significant overhead, especially in
performance-critical applications. Lock-free single-producer single-consumer (SPSC) queues
eliminate locking overhead by structuring concurrent access in a way that does not require
explicit mutual exclusion.

The key idea behind lock-free SPSC queues is to decouple the producer and consumer
operations completely. Specifically, the producer only needs to verify available space at the
queue’s tail before inserting elements, while the consumer independently accesses the front
element (head) of the queue. This clear separation allows producer and consumer operations
to proceed largely asynchronously.

To ensure correctness without explicit locks, atomic operations are employed. Atomics in
this context primarily serve as memory-ordering tools rather than for mutual exclusion. For
instance, the producer must ensure data is fully written into the buffer before incrementing
the tail index; similarly, the consumer must fully read data before incrementing the head
index. While atomics conveniently manage memory ordering, explicit memory fences could
achieve similar guarantees.

A correct implementation uses specific atomic memory orders. On the producer side, the
tail index must be loaded immediately using acquire semantics to confirm available space,
while the head can be loaded with relaxed semantics as it only indicates previously consumed
slots. Conversely, on the consumer side, the head index must be stored using release semantics
to indicate completed reads, and the tail can be loaded relaxed.

Caching head and tail indices locally on the producer and consumer sides can further
reduce atomic overhead. On the producer side, caching the consumer’s head index is beneficial
when the queue is rarely full, reducing redundant atomic reads. Conversely, on the consumer
side, caching the producer’s tail index is useful when the queue is rarely empty. In scenarios
where the queue is frequently full or empty, caching may offer minimal benefits or even
introduce overhead due to stale indices.

This SPSC design does not generalize to multiple producers or multiple consumers. For
example, if two producers simultaneously increment the tail, one may overwrite the other’s
data or skip buffer slots; likewise, concurrent consumers may both attempt to read or advance
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the head, leading to lost or duplicated elements. General-purpose MPSC, SPMC, or MPMC
queues require additional synchronization primitives or patterns—typically involving atomic
compare-and-swap (CAS) operations or ticket-based schemes—to coordinate access among
multiple threads. As a practical stop-gap, one effective way to simulate an MPSC queue
(when precise size bounding is not essential) is to allocate one SPSC queue per producer and
have the consumer time-multiplex between them. This strategy avoids contention between
producers and can be surprisingly performant; Puppetmaster’s software simulation adopts
this strategy. Alternatively, producers may use a mutex to guard access to a shared queue,
though this approach inevitably reintroduces the locking overhead that lock-free designs are
meant to avoid.
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Appendix C

Review of the prior Puppetmaster
architecture

The following appendix discusses the previous design of Puppetmaster [19]. It has been
superseded by the one in chapter 3. We include this review, supplemented with commentary,
to shed light on the challenges inherent to this research area.

C.1 Prior algorithm overview
Puppetmaster maintains a list of all transactions it has received. A transaction is retained in
memory until Puppetmaster no longer requires information about it because it has completed
execution. We refer to the currently stored transactions as “live” transactions. An object is
considered “live” if it appears in the read or write set of any live transaction.

To reduce resource usage across the architecture, Puppetmaster maintains a global
“renaming table” for live objects. This table maps relevant 64-bit object identifiers into a
much smaller internal object name space. Once a transaction is freed, its object names may
be reused. However, at any given time, each name may represent at most one live object. A
typical object name is 10 bits in length, allowing representation of up to 1024 live objects.

When a transaction descriptor arrives, Puppetmaster first processes it through the
“renamer” to produce a compact representation of its read and write sets. The renamed
transaction is then placed into the “scheduling pool,” a buffer where it awaits execution.
Scheduling is triggered when this buffer reaches capacity. A typical scheduling pool contains
up to 128 transactions.

Once the scheduling pool is full, Puppetmaster runs the “tournament-scheduling” algorithm
to determine a subset of transactions that can be executed in parallel. These transactions
are marked as “started” and sent to the executor. The remaining transactions stay in the
scheduling pool. This process is repeated whenever a new scheduling pool is formed, with
Puppetmaster ensuring that no new transactions conflict with those currently in execution.
Upon completion, the executor notifies Puppetmaster, which can then safely free the associated
transaction metadata. The overall dataflow is illustrated in Figure C.1.

The tournament-scheduling algorithm proceeds in multiple rounds. In each round, trans-
actions are paired together. If two transactions do not conflict, they are merged into a single
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Figure C.1: Flow of transaction data through Puppetmaster

composite transaction. If they do conflict, one transaction is chosen arbitrarily and the other
is discarded. This results in halving the number of transactions in each round. The process
continues until only one transaction remains. Puppetmaster retains metadata to reconstruct
the original transactions from the merged result and issue correct start-work messages.

These transaction pairings can be processed in parallel, so the overall scheduling latency
is logarithmic in the pool size, assuming full parallelism.

In hardware, a transaction is represented using an index bitset, a read bitset, and a write
bitset. The index bitset indicates which transactions in the scheduling pool are represented
by the current merged transaction. In the first round, the index bitset is simply a one-hot
encoding of the transaction’s position. The final output of the tournament-scheduling process
is an index bitset representing the set of transactions to start.

The read and write bitsets serve similar roles, each representing the union of the read
or write sets of the merged transactions. Conflicts between transactions can be checked
efficiently using bitwise AND and OR operations.

The need for the renaming process is now evident. Representing read and write sets
as bitsets enables fast conflict detection in hardware but requires a small object universe.
Renaming compresses the 264 possible object IDs into a more manageable space—e.g., 1024
objects. For a scheduling pool of 128 transactions, the total storage required for index, read,
and write bitsets is at most 128 · (128 + 1024 + 1024) bits, or approximately 272 kilobits.

If the scheduling pool is limited to a single transaction, the algorithm reduces to greedy
scheduling, in which each transaction is evaluated sequentially for compatibility with currently
executing ones. Conversely, if the scheduling pool encompasses the entire workload, the
algorithm behaves as a heuristic for offline scheduling. However, such an approach would be
impractical due to its high latency and resource requirements.

C.2 Evaluation of the tournament-scheduling scheme
This section investigates the characteristics of the tournament-scheduling algorithm, specifi-
cally how many transactions it can successfully identify as conflict-free from a fixed-size input
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workload. We use the YCSB benchmark described in section 4.1 to perform a performance
comparison between the tournament scheduler and a baseline greedy scheduler. We conclude
the section by listing several factors that contribute to our decision to re-design the system.

We conduct simulations by first generating an address space corresponding to the database
with N unique addresses. Larger address spaces imply lower contention. Next, we generate a
workload consisting of P transactions (“pool size”), with fixed parameters θ (Zipf parameter)
and ω (write probability). These transactions are processed through both greedy and
tournament schedulers, recording the number of transactions successfully extracted. Each
scenario is run 10 times, and results are averaged.

Results showing the number of transactions extracted as a function of database size are
presented in Figure C.2, where we set P = 128. For clarity, we separate the read-heavy and
write-heavy workloads into distinct plots and evaluate both small (8 records per transaction)
and large (16 records per transaction) scenarios. Each plot shows six lines representing low,
medium, and high contention for both greedy and tournament schedulers.

Figure C.2: Number of transactions extracted by the greedy scheduler versus the tournament
scheduler in various workloads with P = 128

In general, the tournament scheduler under-performs the greedy scheduler when contention
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is high (small address spaces). This performance gap arises because in the final round, two
batches of P/2 transactions are ideally merged—provided they are conflict-free—into a single
batch of P . However, any conflicts between batches reduce the final batch size significantly,
often halving it. Due to the large cumulative read- and write-sets, conflicts are highly probable.
In contrast, greedy scheduling checks transactions individually against the currently running
set, reducing the likelihood and impact of conflicts.

However, with sufficiently large address spaces (low-contention scenarios), the tournament
scheduler matches greedy scheduler performance. Such conditions are realistic in typical
database applications with extensive address spaces.

Additionally, increasing the scheduling pool size P does not necessarily lead to much better
performance from the tournament scheduler, as illustrated in Figure C.3 with P = 4096. (We
graphed only the read-heavy and write-heavy workloads with 16 objects per transaction.) With
larger pools, merging large batches conflict-free becomes increasingly improbable, limiting
effective pool utilization. Conversely, the greedy scheduler continues scaling effectively.

This limitation of tournament scheduling may or may not be acceptable in practical
settings. Real-world performance depends not solely on scheduling throughput but also
scheduling speed—a metric favoring tournament scheduling when implemented in hardware.

Figure C.3: Number of transactions extracted by the greedy scheduler versus the tournament
scheduler in various workloads with P = 4096

Finally, we note that the tournament scheduler requires the scheduling pool to be full before
it can schedule any transactions, so the latency generated by this scheme can be prohibitively
large. The renaming process can also introduce additional latencies as well. Moreover,
achieving performance comparable to a simple greedy scheduler requires a substantial FPGA
area. Given that the rest of the architecture more-or-less already serializes the transaction
stream, we believe a simpler greedy-algorithm-based architecture like in chapter 3 may be
more appropriate.
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Appendix D

Review of Bloom filters

Bloom filters [3] are space-efficient probabilistic data structures. Each Bloom filter represents
a set S and supports the insertion of elements as well as membership testing. The membership
test may return false positives but never false negatives.

A Bloom filter consists of a bit array of length m, initially all zeros, and a collection of
k mutually independent hash functions H1, H2, . . . , Hk. To insert an element xi from the
universe U into S, the bit positions H1(xi), H2(xi), . . . , Hk(xi) are set to 1. To check whether
qi is in the set, the result is positive only if the bits H1(qi), H2(qi), . . . , Hk(qi) are all set to 1.

If qi is in the set, it will definitely return a positive result because the corresponding bits
would have been set during insertion. If qi is not in the set, it may still return a false positive
if those bits were set by other elements. Otherwise, it correctly returns a negative result.

Two common variants are unpartitioned and partitioned Bloom filters. Unpartitioned
Bloom filters use hash functions Hi : U → [m], utilizing the entire m bits. Partitioned Bloom
filters use hash functions of the form Hi : U →

[
m
k

]
, with each function’s output offset by

i · m
k

to map into its corresponding partition.

D.1 False-positive analysis
Partitioned Bloom filters are typically preferred in hardware implementations, since the k
partitions can be checked in parallel, with results combined using the AND operator. The
approximate [8] false-positive probability is:(

1−
(
1− k

m

)|S|
)k

,

where |S| is the number of elements inserted.

Proof. Consider a membership test for xj /∈ S in a single partition i. A negative result occurs
if Hi(xj) points to a bit that is still 0. This negative result arises only when all previous
|S| elements hash to any of the other m

k
− 1 positions, yielding a probability of

(
1− k

m

)|S|.
Therefore, the probability of a positive result in one partition is 1 −

(
1− k

m

)|S|. The final
result is positive only if all k partitions return positives.
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The probability of false positives can be further approximated using a known limit:(
1− e−

k|S|
m

)k
.

We also empirically graphed the false-positive probability to illustrate its dependence on
m, k, and |S|.

First, increasing the total number of bits m allows more elements to be inserted while
keeping the false-positive rate low. Figure D.1 below shows a log-log plot of the false-positive
rate versus the number of elements inserted (|S|), for m = 512, 1024, 2048, 4096, 8192 and
k = 4, determined empirically. For example, with m = 1024, the theoretical false-positive
rate is 2.4% for 128 elements and rises sharply to 16.0% at 256 elements. Thus, to keep the
false-positive rate low, m must be large relative to |S|.

Figure D.1: False-positive rate of partitioned Bloom filters with varying m and fixed k

Second, if m is fixed and k varies, the rate of false positives changes, as shown in Figure D.2.
However, the number of elements that can be supported before saturation remains roughly
the same. For k � m, a higher k leads to lower false-positive rates before saturation. Note
that k cannot grow arbitrarily. If k = m, even a single insertion could saturate the filter by
setting all bits.

Finally, consider the case where m and k scale together, as shown in Figure D.3. As
expected, more bits allow the Bloom filter to support more elements before saturation.
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Figure D.2: False-positive rate of partitioned Bloom filters with fixed m and varying k

Figure D.3: False-positive rate of partitioned bloom filters with fixed m/k
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D.2 Set-intersection Analysis
We now explore additional operations on Bloom filters: set intersection, union, and emptiness
check. These are used to determine whether two transactions’ read- and write-sets overlap.

Given two parallel Bloom filters with the same parameters and hash functions, their
intersection can be approximated using a bitwise AND. This gives an approximate represen-
tation of the set intersection. However, the resulting Bloom filter has a higher false-positive
probability than one built from the actual intersection of the raw sets.

For union, a bitwise OR can be used. This operation is exact—it introduces no additional
false positives compared to constructing a new Bloom filter from the union.

To check if a Bloom filter contains any element, we verify whether each partition contains
at least one bit set to 1. If so, the filter is not empty.

The probability of false overlap during intersection is more complex to analyze. We refer
interested readers to [11], which addresses this topic in detail. According to this source, for
partitioned Bloom filters representing sets S1 and S2, the false overlap probability is:(

1−
(
1− k

m

)|S1||S2|
)k

.

This probability can be quite high. For instance, intersecting two sets of size 16 yields
the same false-positive rate as testing membership in a set of size 256. One saving grace,
however, is that partitioned Bloom filters perform better than unpartitioned ones in hardware
scenarios.
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